IISC JAM Syllabus 2021 – Download Exam Pattern Here

0
IISC JAM Syllabus 2021 – Download Exam Pattern Here
IISC JAM Syllabus 2021 – Download Exam Pattern Here

IISC JAM Syllabus 2021 – Download Exam Pattern Here. Indian Institute of Science and Technology has released the information brochure for JAM 2021 Examination. The board will conduct the IIT- Joint Admission Test for Masters (IIT-JAM). The JAM 2021 Examination for all the seven test papers will be carried out as ONLINE Computer Based Test (CBT) where the candidates will be shown the questions in a random sequence on a computer screen.  In this blog we provided the Joint Admission Test Syllabus & Exam Pattern. Stay with us to get daily updates.

IISC JAM Syllabus Details

Name of the Board Indian Institute of Science (IISc)
Exam Name Joint Admission Test
Starting Date to Apply 10.09.2020
Last Date to Apply 15.10.2020
Exam Date 14.02.2021
Status Syllabus & Exam Pattern

IISC JAM Exam Pattern:

The JAM 2021 Examination for all the seven test papers will be carried out as ONLINE Computer Based Test (CBT) where the candidates will be shown the questions in a random sequence on a computer screen. For all the seven test papers, the duration of the examination will be of 3 hours. The medium for all the test papers will be English only. There will be a total of 60 questions carrying a total of 100 marks. The entire paper will be divided into three sections, A, B and C. All sections are compulsory. Questions in each section will be of different types as given below:

Section–A contains a total of 30 Multiple Choice Questions (MCQ) involving 10 questions of one mark each and 20 questions of two marks each. Each MCQ has four choices out of which only one choice is the correct answer. Candidates can mark the answer by clicking the choice.

Section–B contains a total of 10 Multiple Select Questions (MSQ) carrying two marks each. Each MSQ is similar to MCQ but with the difference that MSQ may have one or more than one correct choice(s) out of the four given choices. The candidate gets full credit only if he/she selects all the correct answer(s) only and no wrong answers. Candidates can mark the answer(s) by clicking the choice(s).

Section–C contains a total of 20 Numerical Answer Type (NAT) questions involving 10 questions of one mark each and 10 questions of two marks each. For these NAT type questions, the answer is a signed real number, which needs to be entered using the virtual numeric keypad on the monitor. No choices will be shown for NAT questions.

In all sections, questions not attempted will result in zero marks. In Section-A (MCQ), wrong answer will result in negative marks. For each wrong answer to 1 mark questions, 1/3 mark will be deducted, and similarly, for each wrong answer to 2 marks questions, 2/3 mark will be deducted. In Section-B (MSQ), there are no negative and no partial marking provisions. There is no negative marking in Section-C (NAT) as well.

IISC JAM Syllabus:

BIOTECHNOLOGY (BT)

BIOLOGY (10+2+3 level):

General Biology: Taxonomy; Heredity; Genetic variation; Conservation; Principles of ecology; Evolution; Techniques in modern biology.

Biochemistry and Physiology: Carbohydrates; Proteins; Lipids; Nucleic acids; Enzymes; Vitamins; Hormones; Metabolism – Glycolysis, TCA cycle, Oxidative Phosphorylation; Photosynthesis. Nitrogen Fixation, Fertilization and Osmoregulation; Vertebrates-Nervous system; Endocrine system; Vascular system; Immune system; Digestive system and Reproductive System.

Basic Biotechnology: Tissue culture; Application of enzymes; Antigen-antibody interaction; Antibody production; Diagnostic aids. Molecular Biology: DNA; RNA; Replication; Transcription; Translation; Proteins; Lipids and Membranes; Operon model; Gene transfer.

Cell Biology: Cell cycle; Cytoskeletal elements; Mitochondria; Endoplasmic reticulum; Chloroplast; Golgi apparatus; Signaling. Microbiology: Isolation; Cultivation; Structural features of virus; Bacteria; Fungi; Protozoa; Pathogenic micro-organisms

CHEMISTRY (10+2+3 level):

 Atomic Structure: Bohr’s theory and Schrodinger wave equation; Periodicity in properties; Chemical bonding; Properties of s, p, d and f block elements; Complex formation; Coordination compounds; Chemical equilibria; Chemical thermodynamics (first and second law); Chemical kinetics (zero, first, second and third order reactions); Photochemistry; Electrochemistry; Acid-base concepts; Stereochemistry of carbon compounds; Inductive, electromeric, conjugative effects and resonance;

Chemistry of Functional Groups: Hydrocarbons, alkyl halides, alcohols, aldehydes, ketones, carboxylic acids, amines and their derivatives; Aromatic hydrocarbons, halides, nitro and amino compounds, 28 phenols, diazonium salts, carboxylic and sulphonic acids; Mechanism of organic reactions; Soaps and detergents; Synthetic polymers; Biomolecules – amino acids, proteins, nucleic acids, lipids and carbohydrates (polysaccharides); Instrumental techniques – chromatography (TLC, HPLC), electrophoresis, UV-Vis, IR and NMR spectroscopy, mass spectrometry.

MATHEMATICS (10+2 level):

 Sets, Relations and Functions, Mathematical Induction, Logarithms, Complex numbers, Linear and Quadratic equations, Sequences and Series, Trigonometry, Cartesian System of Rectangular Coordinates, Straight lines and Family, Circles, Conic Sections, Permutations and Combinations, Binomial Theorem, Exponential and Logarithmic Series, Mathematical Logic, Statistics, Three Dimensional Geometry, Vectors, Matrices and Determinants, Boolean Algebra, Probability, Functions, limits and Continuity, Differentiation, Application of Derivatives, Definite and Indefinite Integrals, Differential Equations.

PHYSICS (10+2 level):

Physical World and Measurement, Elementary Statics and Dynamics, Kinematics, Laws of Motion, Work, Energy and Power, Electrostatics, Current electricity, Magnetic Effects of Current and Magnetism, Electromagnetic Induction and Alternating Current, Electromagnetic waves, Optics, Dual Nature of Matter and Radiations, Atomic Nucleus, Solids and Semiconductor Devices, Principles of Communication, Motion of System of Particles and Rigid Body, Gravitation, Mechanics of Solids and Fluids, Heat and Thermodynamics, Oscillations, Waves

CHEMISTRY (CY):

PHYSICAL CHEMISTRY

Basic Mathematical Concepts: Functions; maxima and minima; integrals; ordinary differential equations; vectors and matrices; determinants; elementary statistics and probability theory.

Atomic and Molecular Structure: Fundamental particles; Bohr’s theory of hydrogen-like atom; waveparticle duality; uncertainty principle; Schrödinger’s wave equation; quantum numbers; shapes of orbitals; Hund’s rule and Pauli’s exclusion principle; electronic configuration of simple homonuclear diatomic molecules.

Theory of Gases: Equation of state for ideal and non-ideal (van der Waals) gases; Kinetic theory of gases; Maxwell-Boltzmann distribution law; equipartition of energy.

Solid State: Crystals and crystal systems; X-rays; NaCl and KCl structures; close packing; atomic and ionic radii; radius ratio rules; lattice energy; Born-Haber cycle; isomorphism; heat capacity of solids.

Chemical Thermodynamics: Reversible and irreversible processes; first law and its application to ideal and nonideal gases; thermochemistry; second law; entropy and free energy; criteria for spontaneity.

Chemical and Phase Equilibria: Law of mass action; Kp, Kc, Kx and Kn; effect of temperature on K; ionic equilibria in solutions; pH and buffer solutions; hydrolysis; solubility product; phase equilibria– phase rule and its application to one-component and two-component systems; colligative properties.

Electrochemistry: Conductance and its applications; transport number; galvanic cells; EMF and free energy; concentration cells with and without transport; polarography; concentration cells with and without transport; Debey-Huckel-Onsager theory of strong electrolytes.

Chemical Kinetics: Reactions of various order; Arrhenius equation; collision theory; transition state theory; chain reactions – normal and branched; enzyme kinetics; photochemical processes; catalysis.

Adsorption: Gibbs adsorption equation; adsorption isotherm; types of adsorption; surface area of adsorbents; surface films on liquids.

Spectroscopy: Beer-Lambert law; fundamental concepts of rotational, vibrational, electronic and magnetic resonance spectroscopy.

ORGANIC CHEMISTRY:

Basic Concepts in Organic Chemistry and Stereochemistry: Electronic effects (resonance, inductive, hyperconjugation) and steric effects and its applications (acid/base property); optical isomerism in compounds with and without any stereocenters (allenes, biphenyls); conformation of acyclic systems (substituted ethane/n-propane/n-butane) and cyclic systems (mono- and di-substituted cyclohexanes). Etc.

Organic Reaction Mechanism and Synthetic Applications: Chemistry of reactive intermediates (carbocations, carbanions, free radicals, carbenes, nitrenes, benzynes etc…); Hofmann-Curtius-Lossen rearrangement, Wolff rearrangement, Simmons-Smith reaction, Reimer-Tiemann reaction, Michael reaction, Darzens reaction, Wittig reaction and McMurry reaction etc.

Qualitative Organic Analysis: Identification of functional groups by chemical tests; elementary UV, IR and 1H NMR spectroscopic techniques as tools for structural elucidation.

Natural Products Chemistry: Chemistry of alkaloids, steroids, terpenes, carbohydrates, amino acids, peptides and nucleic acids.

Aromatic and Heterocyclic Chemistry: Monocyclic, bicyclic and tricyclic aromatic hydrocarbons, and monocyclic compounds with one hetero atom: synthesis, reactivity and properties.

INORGANIC CHEMISTRY:

Periodic Table: Periodic classification of elements and periodicity in properties; general methods of isolation and purification of elements.

Chemical Bonding and Shapes of Compounds: Types of bonding; VSEPR theory and shapes of molecules; hybridization; dipole moment; ionic solids; structure of NaCl, CsCl, diamond and graphite; lattice energy.

Main Group Elements (s and p blocks): General concepts on group relationships and gradation in properties; structure of electron deficient compounds involving main group elements. Etc.

GEOLOGY (GG):

The Planet Earth: Origin of the Solar System and the Earth; Geosphere and the composition of the Earth; Shape and size of the earth; Earth-moon system; Formation of continents and oceans; Dating rocks and age of the Earth; Volcanism and volcanic landforms; Interior of earth; Earthquakes; Earth’s magnetism and gravity, Isostasy; Elements of Plate tectonics; Orogenic cycles. Geomorphology: Weathering and erosion; Transportation and deposition due to wind, ice, river, sea, and resulting landforms, Structurally controlled landforms etc.

MATHEMATICS (MA):

Sequences and Series of Real Numbers: Sequence of real numbers, convergence of sequences, bounded and monotone sequences, convergence criteria for sequences of real numbers, Cauchy sequences, subsequences, Bolzano-Weierstrass theorem. Series of real numbers, absolute convergence, tests of convergence for series of positive terms – comparison test, ratio test, root test; Leibniz test for convergence of alternating series etc.

PHYSICS (PH):

Mathematical Methods: Calculus of single and multiple variables, partial derivatives, Jacobian, imperfect and perfect differentials, Taylor expansion, Fourier series. Vector algebra, Vector Calculus, Multiple integrals, Divergence theorem, Green’s theorem, Stokes’ theorem. First order equations and linear second order differential equations with constant coefficients. Matrices and determinants, Algebra of complex numbers etc.

Download IISC JAM Syllabus PDF

Online Mock Test 2020

Latest Government Jobs 2020

For Online Test Series Click Here
To Join Whatsapp
Click Here
To Subscribe Youtube Click Here
To Join Telegram Channel
Click Here
To Join Facebook Click Here